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FINITE EXTENSION AND TORSION OF CYLINDERS

By A. E. GREEN anp R. T. SHIELD
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The theory of finite elastic deformations of an isotropic body, in which a completely general strain-
energy function is used, is applied to the problem of a small twist superposed upon a finite extension
of a cylinder which has a constant cross-section. The law which relates the force necessary to produce
the large extension, with the torsional modulus for the small torsion superposed on that extension, is
given by a simple general formula. When the material is incompressible the corresponding law is
independent of the particular form of the strain-energy function which applies to the material.
When the cylinder is not a circular cylinder or a circular cylindrical tube the twisting couple
vanishes for a certain value of the extension ratio, this value being independent of the particular
form of the strain-energy function when the material is incompressible. The problems of a small
twist superposed upon a hydrostatic pressure, or upon a combined hydrostatic pressure and tension,
are also solved.

Attention is then confined to isotropic incompressible rubber-like materials using a strain-energy
function suggested by Mooney, and the second-order effects which accompany the torsion of
cylinders of constant cross-sections are examined. The problem is reduced to the determination of
two functions of a complex variable which are regular in the cross-section of the cylinders and which
satisfy a suitable boundary condition on the boundary of the cross-section. The solution is expressed
as an integral equation and applications are made to cylinders with various cross-sections. This
theory is then generalized to include the second-order effects in torsion superposed upon a finite
extension of the cylinders. Complex variables are used throughout this part of the paper, and the
problem is reduced to the determination of four canonical functions of a complex variable, these
functions being the solutions of certain integral equations. An explicit solution is given for an elliptical
cylinder but without using the integral equations.
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1. INTRODUCTION

The theory of finite elastic deformation of incompressible isotropic bodies has been con-
sidered by Rivlin (see references) and more recently by Green & Shield (1950), and special
problems have been solved using completely general forms for the strain-energy function.
Oldroyd (1950) has also discussed the problem of the torsion of an anisotropic circular
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48 A. E. GREEN AND R. T. SHIELD ON THE

cylinder of (almost) incompressible material. It has been possible to obtain exact solutions
of the fundamental equations in the problems which have been considered so far because the
displacements had certain symmetrical properties. For more general types of problems,
however, it does not appear to be possible to obtain exact solutions owing to the non-linearity
of the differential equations occurring in the theory, and it is natural to consider approxi-
mations to exact solutions.

By assuming a special stress-strain relationship Seth and Shepherd (see references) have
solved a number of problems for compressible materials, but Rivlin (1948 ) has pointed out
that Seth’s stress-strain relations are not allowable for the description of the elastic properties
of an isotropic material in which the strain-energy is a function of the strain invariants only.
A number of other writers (see references) have determined second-order effects in a variety
of problems, some of these writers using a stress-strain relationship given by Murnaghan
(1937) for isotropic compressible bodies.

Second-order effects have also been considered by Biot (19394,¢, 1940) and Goodier
(1950) using a somewhat different approach based on theory developed by Biot (19394).
Biot derives a non-linear theory of elasticity and then considers a linearized case for a body
which is under initial stress. Goodier examines the problem of the small twist of a cylinder
which is subjected to a non-uniform initial stress.

In the present paper we first reconsider the problem of a small twist superposed upon
a uniform finite extension of an isotropic cylinder which has a constant cross-section. The
complete deformation is examined from an initial state in which the cylinder is unstrained
and unstressed, and the problem is solved for a compressible material using a completely
general strain-energy function. The law which relates the force necessary to produce the
large simple extension, with the torsional modulus for a small torsion superposed on that
simple extension, is given by a general formula (3-29). When the material is incompressible
the corresponding law (3-30) is independent of the particular form of the strain-energy
function which applies to the material. This law is a generalization of a result found by Rivlin
(1949¢) for a cylinder with a circular cross-section which has already been verified experi-
mentally by Rivlin & Saunders (1951) for rubber-like materials. When the cylinder is not
a circular cylinder or a circular cylindrical tube the twisting couple vanishes when the
extension ratios are related by equation (3-27). When the cylinder is incompressible the
twisting couple vanishes when the extension ratio A along the length of the cylinder is given
by (3:28), and this value of 1 is independent of the particular form of the strain-energy
function which applies to the material. In §4 the solutions of the problems of a small twist
of a cylinder superposed upon a hydrostatic pressure, or upon a combined hydrostatic
pressure and tension, are also given, again using a completely general form for the strain-
energy function. The formulae for the twisting couple for the latter problem are given
by (4:16) for a compressible material, and by (4-18) for an incompressible material.

In the rest of the paper attention is confined to incompressible materials, and a special
strain-energy function suggested by Mooney (1940) for rubber-like materials is used. We
consider the secondary effects accompanying the torsion of cylinders with constant cross-
sections. This problem has been considered by Ishlinsky (1943), Panov (1939), Riz (1938,
1943), Riz & Zvolinsky (1938) and Zvolinsky (1939) using Murnaghan’s stress-strain
relationship for compressible bodies, but this work is not very suitable for rubber-like
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FINITE EXTENSION AND TORSION OF CYLINDERS 49

materials. Also the methods used here, and the mathematical form of the results, differ from
those of previous writers, but the general characteristics of the deformation are similar.
The problem is formulated in § 5 in terms of co-ordinates in the unstrained body and is then
reduced in § 7 to the determination of two functions of a complex variable which are regular
in the cross-section of the cylinder and which satisfy a boundary condition on the boundary
of the cross-section. When the mapping function which maps the cross-section upon the
interior of the unit circle is known, the displacements and stresses can be expressed in terms
of the solution of a certain integral equation (7-18). It is found that there is no additional
warping of the cross-section beyond that given by the infinitesimal theory, and if the cylinder
is not to increase in length the torsion can only be maintained by an additional force applied
at one end of the cylinder parallel to its axis. Alternatively, the additional force can be made
to vanish if the cylinder is allowed to change in length. The theory is illustrated in §§ 8, 9 by
applications to cylinders whose cross-sections are a cardioid, an epitrochoid and a Booth’s
lemniscate.

In the final sections of the paper the theory just described is generalized by considering
second-order effects in torsion after the cylinder has received a finite uniform extension along
its length, the axis of torsion, however, being the line of centroids of cross-sections. Here
complex variable notations are used at the outset, and the solution is reduced to the deter-
mination of four canonical functions of a complex variable which satisfy certain integral
equations (7-18) and (10-24) so that applications may be made once the mapping function
of the cross-section is known. An explicit solution is given in §11 for an elliptical cylinder
without using the integral equations.

2. NOTATION AND FORMULAE
We use the theory developed in two recent papers (Green & Zerna 1950; Green & Shield
1950), which we shall refer to as I, IT respectively, and for conciseness we shall repeat only
the formulae required in the following work.
As in I, the points P; of an unstrained and unstressed elastic body B, at rest are defined
at time = 0 by a rectangular Cartesian system of co-ordinates x; or by a general curvilinear
system of co-ordinates ¢;, where %, = x(0,, 0, 0,), (21)

and the line element ds, of B, is given by
ds§ = dxidx' = g, dO' dbF. 7 (2-2)
The usual summation convention is used and Latin indices take the values 1, 2, 3. An index
which is repeated more than twice is not summed.
The body B, is now strained or deformed, so that at time ¢ the points P of B, have moved
to new positions P to form a strained body B. The points P of B are defined by a new
rectangular Cartesian system of co-ordinates y; which are related to x; by the equations

Y = Ji(%1, Koy %3, 1). (23)
The curvilinear co-ordinates 0, in B,, which move with the body as it is deformed, form
a curvilinear system ¢, in B so that
Yi = Y;(01, 05,05, 1), (2-4)
and the line element ds in B, for a given time ¢, is given by
ds? = dy'dy' = G, d0" dO*. - (2+5)

7-2
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50 A. E. GREEN AND R. T. SHIELD ON THE

We define covariant components of a strain tensor as
Vie = $(Gie— i) - (26)

In the curvilinear system 6, covariant and contravariant base vectors e;, € can be defined
at each point P, of B,, and covariant and contravariant base vectors E;, E/ can be defined
at each point P of B.

A stress vector t, measured per unit area of the strained body B, and associated with the
element of surface normal to the unit vector n, can be defined at P in the strained body B.
I i .

t was shown in I that —— (27)

where n = n,E,

and 77 are the contravariant components of a symmetrical tensor called the stress tensor.
The stress equations of motion (see I) can be expressed in the form

P+ p P = pf, (28)

where p is the density of the strained body B and the double line denotes covariant differen-
tiation with respect to the strained medium B, that is, with respect to ¢; and the metric tensor
components Gy, G*. F and f are the body-force and acceleration vectors respectively, and

F=FE, f{f=f'E,. (2-9)
When surface forces are prescribed at a boundary,

t—P, (2:10)
where P is the surface force measured per unit area of the deformed surface. This may be
written in terms of components referred to base vectors E, in the form

P— (211)
When a strain-energy function W, per unit volume of the unstrained body, exists, it was

shown in I that ,
w_ [(8)oW .
= (G) P (2:12)

where G = |Gy, g:'gikl'

For a material which is isotropic in the undeformed state, the strain-energy function W’
is a function of the three strain invariants /;, [, and I; which are given by

G

I =g°G, I,=g,,G"l, L= g (213)
It was shown in IT that

a1, . 0l L G ‘
= 2¢%, % = 9[I g*—g"gkG, ], — = 2GG*. 2:14
i T il Lt i SR O (2:14)

From (2:13) and (2-14) we see that
a1, .

— 2, G*, 2-15
Vi ’ ( )

and the substitution of (2:13) and (2-15) in (2-12) leads to the stress-strain relation
7 = Dgit | VB | pGH*, (2:16)
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FINITE EXTENSION AND TORSION OF CYLINDERS 51
ow’ ow’
—of-} — o]t
where we have put b =2[; T V=2l AR

ow’

il

®, ¥ and p being scalar invariant functions of 1}, I,, I,. This notation differs slightly from
that used in II.

For an incompressible material, the incompressibility condition is G = g, or I; =1, at
all points of the body, and the strain-energy function W is then a function of 7, and I, only.
As shown in II, the stress-strain relation (2-16) is still valid, but in this case we have

ow’ ow’
=25 V=25
and p is a scalar invariant function of the co-ordinates 6, for each value of the time ¢.

In the latter half of the paper we restrict our discussion to materials which are incom-
pressible and which have the strain-energy function

W' = Cy(I,—3) + Cy(T,—3) (217)

used by Mooney (1940) for rubber-like materials, where C; and C, are constants. For this
material, (2-16) gives us the stress-strain relation

7k = 2C, gk +2C, B+ pGik. (2:18)

B* = I,g*—g"g"G,,, p'=2[3

(0

This completes the summary of formulae which will be of use in the present paper.

3. SMALL TWIST SUPERPOSED UPON FINITE EXTENSION

We suppose that the unstrained body B, is a cylinder of isotropic elastic material of con-
stant cross-section R, whose generators are parallel to the x;-axis, the plane ends of the
cylinder being x; = 0 and x; = [;. The cylinder is now given a uniform simple extension A
along the x;-axis so that the point (x;, x5, x;) moves to the point (4, x,, 4, x,, A1), where A, is
the extension ratio in directions perpendicular to the x;-axis. We shall take the convected
co-ordinates ¢; of a point in the elastic body to be the co-ordinates (x,y, z) of the point after
the simple extension has been imposed, referred to Cartesian axes coincident with the
x;-axes.

Then we have X =A%, y=2»Axy 2z=2Nxs, (3-1)
where we have written (x, y, z) for (0,,0,,0,), and also
1
w 0 0
! A3, 0, 0
1 ) 1
S = 0, /1—2, 0 5 g”f == O, /1%, 0 y &= /Fll_z. (3’2)
1 1
) 0, 0, A2
Oa Oa F

Finally, the cylinder is given a small twist ¢, per unit length of the strained body, about the
x5-axis. We assume that the final co-ordinates y; of a typical point of the strained body are then

Y1=x—Yyz, Yo=y+yxz, ys=2z+9d(xy), (3:3)
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52 A. E. GREEN AND R. T. SHIELD ON THE

where ¥ is considered small in the classical sense, ¢(x,y) is the warping function, and the
y;-axes are taken coincident with the x,-axes. From (3-3) we find that

? L, - ¢Z, - lﬁy
% = ;ﬁz) 1, gﬁx ’ (3°4)
k
Vds Yo, 1

where suffixes x, y denote partial differentiation with respect to these suffixes.
Neglecting powers of ¢ above the first we obtain, from (3-4),

1 0, A
Gy = 0, L, ¢(¢y+x) >
U(d.—y), ¥(4,+%), 1
1, 0, —¥(¢.—Y)
G = 0, 1, —¥(g,+x) ), G=1. (35)

—¥ b=y, —¥(g ), 1
The strain invariants (2:13) are found to be
I =234+22, L, =2322+1%, I;=A11A% (3-6)

and since the invariants are constants, the functions ®@, ¥, p are also constants. The tensor
components B#* are given by

A2(A24-22), 0, —yYAi 3¢, —y)
Bik — 0, A3(A3+12), — Y223, +x) | (37)
—yA32(P,—y), —YA3A(P,+x), 243 1%

The substitution of (3:2), (3:5) and (3-7) in the stress-strain relation (2-16) leads to the
following values of the components of the stress tensor:
1l = 722 = QAF++ WA (A3 +A%) -+,
3 = Q124+ 2WAI2+p, T12=0,
™ = —y(g,—y) (YRR 41},
72 = — (g, +x) {TRA+p.
The components 7!! and 722 will be zero if
QA2 +Y3(A3+A%) +p =0, (3-9)

and, when the material is compressible, this equation serves to determine 4, in terms of A if
the form of the strain-energy function is known. When the material is incompressible, we
have A, = 1/,/A since G = g in this case, and equation (3-9) gives the value of the pressure
function p.
Using equation (3:9), the non-zero components of the stress tensor can be written
8 = {D+WAZ} (2—A}) = H (say),
™ = (4, —y) {O+ P} A3, (3:10)
75 — (g, +x) {0+ A A2

(3-8)
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FINITE EXTENSION AND TORSION OF CYLINDERS 53
Since we have i 10/G _ ,
{i k} =6, =0 (k=123

in this case, where {r ! s} are the Christoffel symbols of the second kind for the co-ordinate

system 0, in the strained body, the equations of equilibrium with no body forces, obtained
from (2-8), are

Tiki+{.k }T"’ =0,
SR VA

where the comma denotes partial differentiation with respect to ;. The Christoffel symbols

are of the order of ¥, so that we need only know the symbols { } to obtain the equations

3 3
of equilibrium. These symbols are found to be zero so that the first two equations are auto-
matically satisfied, while the third equation gives

We now consider the boundary conditions. We suppose that the curved surface of the
cylinder in the strained state is the surface

Flx,y) — o, (3:12)
where the surface FA x,,%5) =0 (3-13)

was the curved surface of the cylinder in the unstrained state. Equation (8-12) is to be inter-
preted as the parametric equation of the surface. The co-ordinates y; of a point on the strained
surface are given in terms of the parameters x, y by means of the equations (3-3). The unit
normal n to the strained surface has covariant (or contravariant) components referred to the
y;-axes which are proportional to dF/dy,, and a simple tensor transformation shows that the
covariant components of n referred to the base vectors Ef defined in § 2 are proportional to

OF 0y, _ OF
dy; 00, 96,’
that is, npinging = F. F 0. (3-14)

The first two boundary conditions on the curved surface, which we suppose to be free
from applied traction, are automatically satisfied, while the third condition is

(b.—y) F4-(p,+x) F,=0 on F(x,y) = 0. (3-15)

If the harmonic function w(x,, x,) is the classical torsion function for the cylinder, then
w(x,, %,) is such that

(@i—xZ) BF—}—(% —[—xl) IF_ 0 on F(Ax,A;%,) = 0.
2

0x, dx; ' \0x, ox
This condition may be written V
Ay, —y/Ay) Fot (0, 45/,) F, =0 on Fls,y) =0, (3-16)

and, by comparison of (3-15) and (3-16), we see that
(% y) = NFw(x,; %) = Rw(x/A,, y/Ay). (3-17)
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54 A. E. GREEN AND R. T. SHIELD ON THE

The end x; = /; of the unstrained cylinder becomes the surface z = [ = A/, in the strained
state. The unit normal to this surface is E3, and therefore the tensor components of traction
(2-11) on this surface, referred to base vectors E,, are 7. If ¢* are the components of surface
traction referred to the y,-axes, then we have

¢t = {Tsi %} — (18— yyr33, 128 4 ofar3, 133), (3-18)
i’z=1
The element of area of the surface z = [ is dS = ,/(GG3%) df' df* = dxdy, and if Y* are the

components of the resultant force over the end of the cylinder, referred to the y-axes, then
we find that

1= f f g'dS = —yHA, Y= yHA, (319)
R
and Y —H f f drdy — HA = {0022} (12— 22) 3 4,, (3-20)
R
where 4, = f f ydxdy, Ay=ff xdxdy,
R R

and where 4 and 4, are the areas of the cross-sections of the strained and unstrained cylinders
respectively, and R is the domain enclosed by the curve F(x,y) = 0 in the xy-plane. The
transverse forces Y1, Y2 are zero if the axis of torsion coincides with the line of centroids of
the cross-sections.

The moments m!, m? of the total traction on z = / about axes through the point y;, = (0, 0,/)
and parallel to the y,-axis and the y,-axis respectively, are given by

m! = ff Yo — (y3—1) 4%}, dS = ff {129°}.-1dx dy
® R

— HA,+ylHA,, (3-21)
m? = ffR{@s_l) 7' = Y147} dS = —ff RUTESTAL
= —HA,+ylHA,. (3-22)

Remembering that the cross-section z = [ has been turned through an angle ¥/ during the
deformation, we see that m!, m? are the moments of the force H extending the cylinder taken
about the y,-, y,-axes. These moments are zero if the axis of torsion coincides with the line
of centroids of the cross-sections.

The moment m3 of the traction on z = [ about the y,-axis is given by

m = Jfk{yl > =, ql}z=l s

— Y-+ A G Sy L, (3:23)
where S= [[ ety —ypaay,
(3-24)
d I= 24-y2) dxdy.
an ffR (x2+y?%) dxdy

Owing to the term yHI in the expression for m3, the magnitude of the twisting couple m?
depends upon the position of the axis of torsion, which is here taken to be the x;-axis, and
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FINITE EXTENSION AND TORSION OF CYLINDERS 55

when H is positive the couple is least when the axis passes through the centroids of the cross-
sections ; that is, when the transverse forces Y!, Y2 and the moments m!, m? are zero.
Using (3-1) and (3-17), it can be shown that

S = A‘fff {x%—l—x§+xlg~zg uxggg} dxydxy, = A3S,,
Ry *2 %
, (3-25)
I=M[ {+spdndn, = NI,

-where S, is the torsional rigidity of the unextended cylinder, and /; is the moment of inertia
of the unstrained cross-section R, about the x,-axis. The torsional rigidity .S, differs by a
constant factor from the usual definition of the classical torsional rigidity.

By substituting the values of S, I and H given by (3-25) and (8-10) into the expression

(3-23) for m®, we obtain mS = YAHD+ AT, — 2 (I, — S,)}. (3-26)

It has been shown by Diaz & Weinstein (1948) that S,<I,, and the equality sign
holds only when the cross-section is a circular region or a circular ring bounded by two con-
centric circles. Hence we see from (3-26) that when the cylinder is not a circular cylinder or
a circular cylindrical tube, the twisting couple m?® will be zero, to the first order in ¢ at least,
when A is such that 2 I,—S,

g
provided that A{®+"¥A3} is finite for this value of A.

Although the value of 1, is given in terms of A by (3-9) and cannot be determined explicitly
unless the particular form of W’ is known, it is to be expected from practical considerations
that A; will often be greater than unity when A is less than unity and the cylinder is com-
pressed in the direction of its length. Itis probable, therefore, that a value of A exists for which
(3-27) is true. »

When the material is incompressible, 4, = 1/,/A and equation (3:27) becomes
and the value of A determined by this equation is independent of the particular form of the
strain-energy function which applies to the material. Assuming that the cylinder is twisted
about the line joining the centroids of the cross-sections, the value of A satisfying equation
(3-28) for a cross-section which is an ellipse, the major axis of which is twice the minor axis,
is 0-71. When the cross-section is an ellipse of which the major axis is four times the minor
axis, the corresponding value of A is 0-92.

From (3-20) and (3-26) we obtain

Y2 (1J3—1/22) 4,
mify ~ Ty~ (=50 A%
and this relates the force necessary to produce a large simple extension with the torsional

modulus for a small twist superposed upon that simple extension. When the material is
incompressible, (8:29) becomes

<1, (3-27)

Ly (3-28)

(3-29)

S (A=1/A2) 4,
my — (Lo—50) /%Y’

VoL. 244. A. 8

(3-30)
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56 A. E. GREEN AND R. T. SHIELD ON THE

and, in this case, the relation is independent of the particular form of the strain-energy
function which applies to the material. The law (3-30) has been obtained previously by Rivlin
(1949¢) for the special case of a circular cylinder, and in this case it has been verified experi-
mentally by Rivlin & Saunders (1951).

Equation (3-29) is expressed in terms of the extension ratio and the dimensions of the
unstrained (and unstressed) cylinder, and is analogous to a formula obtained by Biot
(19396) and Goodier (1950), but their result is not expressed in terms of a cylinder which is
initially unstrained and unstressed.

4. SMALL TWIST IN PRESENCE OF HYDROSTATIC: PRESSURE

In this section we discuss the effect of a hydrostatic pressure upon the small torsion of
the cylinder defined in the previous section. We assume that the uniform pressure @ causes
a uniform compression A of the cylinder, and we take our convected co-ordinates §; to be

grved bY ) (ﬁb 529 03) = (xa Y, Z) = (Axb /lxzs /{X3) (4'1)
This implies that
1 . . 1
8ir = ;{iaiks g = 1%%, g= 18’ (42)
where Jy, 0% are Kronecker deltas.

As in the previous section, the final co-ordinates y; of a typical point of the strained body

are taken to be
Yy =x—Yyz, y,=y+yxz, y3=z+yYd(xy), (4-3)

and the metric tensor components G, G* are given by (3-5).
The strain invariants (2-13) are found to be

I, =312 I,=30% I,=15

showing that the functions ®, V" and p are constants.
It is a simple matter to calculate the components of the stress tensor from the stress-strain
relation (2-16), and, omitting the details of the calculation, we find that

Tl =72 = 138 = QA2+ 2% +p, 7112=0, |

7 = —y(g—y) (P44}, 12 = — (g, +x) (P49} ]
Since we suppose that there is a uniform hydrostatic pressure @ we require
D2+ 2W Nt +p = —, (4+5)

and the stress components (4-4) can then be written in the form

(4-4)

=12 =B 712=,
™8 = (g, —y) {PA+ PN+ a}, : (4-6)
73 = (B, +x) {P22 4 VA -+ 7}

Equation (4-5) serves to determine A for a given pressure @ when the form of the strain-

energy function is known; alternatively, if the material is incompressible and therefore
A = 1, the equation gives the value of the pressure function p.


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FINITE EXTENSION AND TORSION OF CYLINDERS 57

The equations of equilibrium, with no body forces, can be obtained in a similar manner
to that of the previous section, and it is found that they will be satisfied, to the first order

in ¢, if we have bot By = 0. (47)

As in the preceding section, we take the curved surface of the cylinder in the strained state
to be the surface (3-12), where F(Axy, Ax,) = 0

was the curved surface in the unstrained state. The surface force per unit area of this surface
due to the applied hydrostatic pressure is the vector —wn, where n is the unit normal to
the strained surface. Employing (3-14), it is found that the first two boundary conditions,
given by (2-11), are automatically satisfied, while the third condition is

($e—y) Fut-(§, +x) F, =0 on Flx,y) =0. (4:8)
It can be shown in a similar manner to that of the previous section that we have
P(x,y) = Lw(xy, %) = Lw(x/A,y/A), (4:9)

where w(x,, x,) is the classical torsion function for the cylinder.

On the end z = [ = A/, of the deformed cylinder, the unit normal to which is E3, the com-
ponents of surface traction (2-11) are 73, and if ¢* are the components of surface traction
referred to the y,-axes, then we have, as in § 3,

qk — {7-31' g%_k} — (7-13 — ?ﬁ!/"%, 723 + ¢x733’ 7-33) . (4. 10)
z=]

The components Y* of the resultant force over the ends of the cylinder are, in the notation
of §3, Y!'=ywd, Y2=—yod, ¥V'=—od=—old, (4-11)

while the moment m3 of the traction on z = / about the y,-axis is given by

m = ffR{yl *~Y,9"},-,dS

= {02+ VYAt 4w} S—ywl. (4-12)
The results (3-25), in which 4, is replaced by A, can be used to write (4-12) in the form
m® = P{O-++WYA%} A8S, — ywAt(L,—S,). (4-13)

The couple m3 will be zero, for cross-sections which are not bounded by concentric circles,
when the pressure @ is such that the value of A, determined by equation (4-5), gives

A2 28,
For an incompressible material, A = 1, and the applied couple (4-13) is then
m* = P{Q+ W}, Sy— Yo (L,—5S)
= WES,—yo(l,—S,),
where £ is Young’s modulus of the material for small strains. The twisting couple will
be zero if s

—1 .
w = 3E10*So’ (4-15)

8-2
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provided that the cylinder is not a circular cylinder or a circular cylindrical tube, when the
torsion couple is unaltered by the presence of the hydrostatic pressure.
~ The effect of a finite simple extension along its length together with a uniform hydrostatic
pressure upon the small torsion of the cylinder can also be determined. It is found that the
twisting couple m? is given by

m® = YAH{(@+WAF) [y — (L, — So) ] — o (L, —S0) (4:16)
where @ is the hydrostatic pressure, A is the extension ratio in the direction of the length of

the cylinder and A, is the extension ratio in directions perpendicular to this direction. The
extension ratio A, is given, in terms of 1 and @, by the equation

OL2+VYR(A+22) +p = —w. (4-17)
For an incompressible material, A, = 1/,/4, and the couple is then
m® = Y{(@+ /1) (120, — (Lo —So) [A] =@ (Ly—S,) 1A% (4-18)

PURE TORSION OF INCOMPRESSIBLE CYLINDERS: SECOND-ORDER EFFECTS

5. STATEMENT OF THE PROBLEM

In this part of the paper we shall discuss the secondary effects accompanying the pure
torsion of an incompressible cylinder of constant cross-section. The most convenient
formulation and solution of the problem is in terms of complex variables, but, for clarity,
equations are first derived in terms of real co-ordinates and complex variables are introduced
later. The experience gained in considering this problem enables us to use complex variable
techniques throughout the formulation and solution of a more general problem. This is
considered in the last part of the paper and is the problem of the second-order effects arising
from the torsion of an incompressible cylinder which has previously been subjected to a finite
extension.

The unstrained body is taken to be a cylinder of constant cross-section R, whose generators
are parallel to the x;-axis and the plane ends of which are x; = 0 and x; = /. The material
of which the cylinder is composed is assumed to be incompressible and isotropic in the
unstrained state and to have the strain-energy function W’ given by (2:17). It has been
pointed out by Rivlin & Saunders (1951) that this is the most general form of the strain-
energy function W’ if, when W’ is assumed to be expanded as a double power series in [, —3
and I,—3, terms of higher order than the third order of smallness are neglected in the
expression for W’; that is, if terms of higher order than the second are neglected in the
expressions for the stress components.

We shall take the convected co-ordinates 6, of a point in the elastic body to be the Cartesian
co-ordinates x; of the unstrained state and we put 0, = x; = (x,y,z). It follows that

gh=20% g=1 (5:1)

We wish to find a set of displacements whose components #; along the x;-axes are such that
the cylinder is in a state of torsion about the z-axis (or x;-axis), and we aim to choose our
displacements so that the equilibrium of the cylinder is maintained only by forces at the ends
z = 0, z = [, the cylindrical surface of the cylinder being free from applied stress.
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FINITE EXTENSION AND TORSION OF CYLINDERS 59

If the cross-section is circular, and if, in pure torsion, each section of the cylinder which
is normal to the z-axis is rotated through an angle ¥z, the displacement components may
be written V

u, = (xcosyz—ysinyz) —x, u,= (xsinyz+ycosyz)—y, u;=0.
These displacements automatically satisfy the incompressibility condition. If powers of
¥ above the second are neglected then the above displacements become approximately
W ==y = Yz, =0,
These forms suggest that for an arbitrary cross-section we should assume that the dis-
placements u; are U = —Yyz—3 ;ﬁzsz% 12ha 442U,
Uy = Yxz—§Yyzt—3)hy +4°V, (5:2)
uy = YP(%y) +y*hz+yW,

where, here and subsequently, all quantities which contain the third and higher powers
of y are neglected. The functions U, V, W, § are functions of x and y only and ¢ is the classical
torsion function. The terms containing the constant 4 represent an extension of the cylinder
of the second order in 3. Taking the y;-axes to coincide with the x;-axes we obtain, since

Y = %+,
1— 39222 — Ly +y2U,, —yz+y2U,, —Yy—yxz
g% _ Y2+, V=2 —Wh+y™,  yr—yyz |, (53)
" yo AP, ey v, 1+4%h
and JG = 1+y2(yd,—x4,+ U +V,),

where, as before, suffixes , y denote partial differentiation with respect to these suffixes.
The incompressibility condition G = g is therefore

UV, = xp,—y4,. (5+4)
The covariant components G, of the metric tensor are found from (5-3) to be
Gy, = 1+9%2U,—h+¢2),
G = L4422V, —h+47), |
Gyy = 1+¢%(2h+47+97), |
Gip = XU, +V,+4.4,),
Gi3 =¥ (¢.—y) +¥*W,,
| Gos = Y (¢ +2)+9W,, )
and, using the incompressibility condition (5-4), the contravariant components G are
found to be GU = 1—y2(2U,—h+2y8, ),
G = 1—y*(2V, —h—2x¢,—x?),
G = 1—y*(2h—2x¢, + 244, — 7 — 43),
G2 = —y*(U, +V,— 24, +y¢, +xy),
G = —§(¢—y) —¥* W,

GB = —y(§,+x) W,

(5:5)

(5:6)
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60 A. E. GREEN AND R. T. SHIELD ON THE

The first strain invariant is
1, = g°G, = 3+9*{(8,—y)*+ (¢, +%)%,
and the tensor components B* defined in § 2 are given by
BY — 2— 22U, ~ i+ 29—~ (3, +)%
B2 = 2 — 22V, — h—2xf,— 2 — (4, — )%,
B9 — 2~ y2{2h— 23, + 2y, — 24},
Bl — — U, + V4 8}
BY — — (g, —y) 4,
B2 ——y (3, +5) ~ W,
We know that when quantities containing the second and higher powers of  are neglected,
the problem reduces to the classical torsion problem. The stresses 711, 722, 733, 712 are therefore

at least of the order ¥? and, remembering the stress-strain relation (2-18), we assume that
the pressure function p has the form

b =—2(C1+2Cy) +20*{(Cr+Cy) +x(%, )} (5:8)
where yis a function of x and y only and is independent of the constant 4. The substitution of
(5-1), (5+6), (5-7) and (5-8) in (2-18) leads to the following values of the stress components,
correct to the order ¥2:

T = 203y + (G4 Cy) [2U,+ 298, — 5] + (8, +%)%,
7% = 2y + (C1 4 Cy) [2V, — 2x¢, — 7] + (o4, — )},
758 = 2y + (C1+Cy) (3h—2x4,+ 246, — Fi—4))} )
12— 2Y(C,+Cy) [U,+V,— 6+ 4, + ] — Cold,—9) (4,5}
™ = 2(C+C) Y (8. —9) + ¥ Wi
8 = 2(Cy+-C) (B, +3) 9}

Since {izk}zﬁ%:o (k=1,2,3)

in this case, where {j ! k} are the Christoffel symbols for the strained body, the equations of

(57)

(5:9)

equilibrium with no body forces, obtained from (2-8), are

Tikai"l"{i k‘r} 7" = 0.

The Christoffel symbols are of the order of ¥, so that it is only necessary to calculate the
symbols { 1 k 3} , { 9 k 3} to obtain the equations of equilibrium, and it is found that they will

be satisfied to our degree of approximation if

X+ (Ci+Cy) V3V = Ciy+Cofy+ (8, —y) (3—8.,) — (6, +2)) (5:10)
ViW = 0,
02 02
29 0
where V= 8x2+ e
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FINITE EXTENSION AND TORSION OF CYLINDERS 61
The incompressibility condition (5-4) and the harmonic property of the torsion function
Vig =0 (5-11)
have been used in formulating equations (5:10). It follows from (5-4) and (5-10) that
Vix = 20, —2C,{2+ 9%+ ¢2,}. (5:12)

We now consider the boundary conditions: If the curved surface of the cylinder in the
unstrained state is the surface
F(x,y) =0, . (5°13)

then the curved surface of the strained cylinder is also given by (5-13), where this equation
is interpreted as the parametric equation of the surface. The co-ordinates y; of the strained
surface are given in terms of the parameters x, y by means of the equations y; = x;,+#;. Asin
§ 3, the covariant components, referred to the ,-axes, of the unit normal n to the strained

surface are such that nyinying — F,: Fyi 0.

The boundary conditions (2-11) on the curved surface, which we suppose to be free from
traction, therefore reduce to the three conditions

XA (Co+-Co) 20U, 49" B+ [U, 4V, — 26, —yd, —xy] F,}
+Co(d, +%) {(¢, +2) F,— (¢ —y) F,} = 0,
Xy (O C) {[2V, +#2) Fy + [U, + V424 438, —xy] F .} (5:14)
+Co(B.—9) {d—y) F,— (§,+%) F} = 0,
M/;C'F.;_I_M/_;Fy = Oa

on the surface (5-13), where we have used the boundary condition satisfied by the classical
torsion function ¢, i.e. (be—) Bt (4, +2) F, = 0 (515)

on the surface (5-13). The third boundary condition in (5-14) is equivalent to dW/dn = 0 at
the boundary, i.e. the outward normal derivative of W is zero, and as W is single-valued,
and the third equation in (5-10) shows that I is a plane harmonic function, it must therefore
be a constant. This constant may be taken to be zero since it represents a rigid-body dis-
placement. 4

The components 7% of the stress tensor referred to the f;-axes are given by the formulae
(5+9) in which W is put equal to zero. Alternatively, we may refer the stresses to the y,-axes.
Denoting the components of the stress tensor referred to the y,-axes by #*, we have

-
36, 86,

and (5:3), (5-9) give
M =2y + (Cy+Cy) [2U,+y%1+ Cy(g, + %)%,
122 = 2y + (Cy+Cy) [2V,+22] -+ Cy (B, —y) %,
153 = 29y + (C,+Cy) (3h+¢2+¢2)}, >
12 = 292((C, +Cy) [U, +V,—xy] — Cy(d,—y) (8, +x)},
1 = 2(Cy+Co) Y (b, —y) —¥*2(4, +2)},
1% = 2(C,+Cy) Y (4, +2) +9°2(8.,—y)}-

(5'16)
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62 A. E. GREEN AND R. T. SHIELD ON THE

We shall now consider the traction on the end z = /, of the cylinder which must be applied
to maintain the state of stress represented by (5-9) or (5-16). The unit normal to the surface
z = [, in the strained state has covariant components, referred to the base vectors Ef, which
are equal to (0,0, 1) if y2? and higher powers of ¢ are neglected. Hence the components of
surface traction on z = [, referred to the base vectors E;, are 7%, and if ¢* are the components
of surface traction referred to the y,-axes

9y

k — | 7317 Tk
¢~ a0, }m
That is, to our order of approximation,

¢ =%y = ¢ =2+ (GG Bh—xg,+yd)}.  (5:17)
The element of area on the surface z = [, in the strained state is ,/(GG33) df' df?, and this is
equal to dxdy if we neglect the second and higher powers of . If Y* are the components of
the resultant force over the end of the cylinder, referred to the y,-axes, it can be verified that

Y“—-:f Cdxdy =0 (x=1,2),
Ry

where R, is the domain bounded by the curve F(x,y) = 0 in the xy-plane. The resultant
force Y3 parallel to the y,-axis is

vo= [ pdsdy=2p2 [ 0t (€ C) (shrty +y) dedy,

and this can also be written in the form

vs= 22| Qo (CiotC) (3hg2 g dedy, (515)

for, if we apply Stokes’s theorem and use the boundary condition (5:15) together with
(5:11), we find that

H {(7x[¢ Ha (66,1 drdy = U {292+ xg,—ypJ dudy = 0. (5-19)

The moments m of the total traction on z = /, about axes parallel to the y;-axes through the
point y; = (0, 0,/,) are given by

m! = f o 020 (4= lo) sy Aoy

=202 [yt (Gt G Ly(3h—y ) 44, + )11 vy
me =[] (=) ¢~y ey |
——2ye[[ o (G4 C) xCoh—sy ) —oh— ey | 0

m3 = f . {V10°—Y2q'} =y dxdy

— 2)(C, 1 Cy) f fR (2 -y 2, —y Jdudy
= 23”(01 “[‘02) So: |
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FINITE EXTENSION AND TORSION OF CYLINDERS 63

where S, is the geometrical torsional rigidity of the unstrained cross-section of the cylinder.
The value of m3 in (5-20) can also be obtained from the general formula (3-26) by putting

6. EFFECT OF CHANGE OF AXIS OF TORSION

In the preceding section, the axis of torsion was assumed to be the x5-axis. If we had taken
the axis of torsion to be the line x; = —a, x, = —b, then we would have assumed that the
displacements «; along the x;-axes were the expressions

Uy = —y(y+b) z— W (x+a) 22— 3P hx +-y2U,
uy= Y(x+ta)z—32y+b) 22— 3phy +y2v7, (6:1)
wy= Y@ (xy) + ¥z,

where U’, V', ¢’ are functions of » and y only. We have omitted the third displacement
function W, since we found in §5 that it could be taken to be zero. The incompressibility

condition is now U + Vy’ = (x+a) ¢1,/ —(y+b) 4.,
and, as before, the pressure function p occurring in the stress-strain relation (2-18) is assumed
to be b ==2(Cy+2C) +22{h(Cy+C) +x (%)}

Using the values (6-1) for the displacements and this value of the pressure function p, the
expressions for the stresses 7% and the equations satisfied by the functions U’, V', ¢’, ¥’ are
given by the corresponding expressions and equations of §5 provided that we replace
%y, U, V, ¢, x by x+a,y+b, U, V', ¢, ' respectively.

Thus the stress components referred to the convected co-ordinate system 0; = (x,y, z) are
now given by

71— 22y + (Cy+ Cy) [2U; +2(y +b) #,— (y+5)2 +Colg) +x-+0) )
72 = 2Py + (C+Cy) [2V,—2(x+0) 6, — (x+0)2] + Ca(d—y — )2},
7% = 22y + (Cy+Cy) [3h—2(x-+a) 6, +2(y+b) r— 42— 4,71},

~—

712 = 2 H(C1+Cy) [Uy+ Vi — (x+a) g+ (y+0) g+ (x+4) (y+0)] ¢ (6-2)
—Cy(,—y—0) (¢, +x+a)},

718 =2Y(C1+C,) (ge—y—b),

rB = 2§(C, +Gy) (¢ +x-+a). )

The torsion function ¢’ of this section is harmonic in the cross-section of the cylinder and
satisfies the condition (B,—y—b) Fo+ (§+x+a) F, = 0 (6:3)
on the boundary of the cylinder F(x,y) — 0. Comparison of (5+15) and (6-3) shows that we
must have & (x,9) = $lx,y) +bx—ay, (6-4)
apart from a non-essential constant. Using the result (6-4) we find that

UiV, = (x+a) (¢,—a) — (y+0) (¢, +0),

Xy (CrtCy) ViV = C(y+5) +Col(y +8) + (P —¥) (8—8y) =Py ($,+ )}
V% X, = 2Cl - 202{2 + ¢%x + ¢3y}’

VoL. 244. A. 9
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64 A. E. GREEN AND R. T. SHIELD ON THE
with the conditions

X'F+(Ci+Co) {[2U;+ (y + )2 F,+[U, 4V, — (x+a) (4, +5)
—(y+0) (¢,—a) — (x+a) (y+ )1 F } +Cod, +2) {($, +%) F,— (¢.—y) F,} = 0,

NE,+(Ci+C){[2V+ (x4 a)*] Fy +[Uy+ Vi + (x-+a) ($.+0) (9
T(y+0) (¢, —a)—(x+a) (y+0)1 F 3+ Cold,—9) {($:—9) E, — (¢, +%) F.} = 0,
on the boundary F(x,y) = 0.
We now put
U=Utu, V'=V+v, ¥ =y+§ (6:7)

where U, V, y are the two displacement functions and the pressure function when the axis
of torsion is the x;-axis, that is, when a = b = 0. By subtracting the equations (6-5) and the
boundary conditions (6-6) from the corresponding equations and boundary conditions
satisfied by the functions U, V, y in § 5, we find that u, v, £ are such that

u,+v, = ap,—bp,—ax—by—a>— b2,
£+ (Cr+Cy) Viu = (C1+Cy) g,

(6-8)
&+ (Ci+Cy) Viv = (C,+Cy) b,
ViE =0,
with the conditions
EF+ (Cl‘+ C,) {(2u,+2by +b?) F,+ (u,+v,—ap,—bp, — 2bx—ab) F,} = 0,} (69)
EF,+ (C,+Cy) {(2v, +2ax+a?) F,+ (u,+v,+ap,+ b, —2ay —ab) F,} = 0,

on F(x,y) = 0.
It can be shown that the solution of the equations (6-8) subject to the boundary conditions
(6-9) is given by
= —bp— Jals—y?) — Ry —H(a®+ 302) s+ Jaby,

v = ap—1b(y* — %) — jaxy — 1(3a° 4 b%) y + 3aba, (6:10)
£ = (Cy+C) {axtby+Ha+ 89},
apart from non-essential constants in the expressions for # and v. The formulae (6-7) and

(6-10) together give the values of the functions U’, V', ¥’, and the substitution of these values
and the value of ¢’ given by (6-4) into the expressions (6-2) for the stress components gives

T =29y + (C1+Cy) [2U, 4298, — 471+ Co(¢, +2) 7},
7% = 20y +(C1 + C,) [2V, — 226, — 4%+ Cy (. —9)*),
1'% = 22} + (C1+Cy) [3h— 224, +2yp,— 87 — § + Bax + by +3(a*+ 67 ]},
712 = 20 %(C,+Cy) [Uy+V,— 2. +y¢, +2y] — Co(d:—7) (4, +%)};
718 =24 (C1+C,) (4,—),
7% =24 (C,+Cy) (4, +x).
If we compare the expressions (6-11) with the expressions (5-9), in which W is put equal
to zero, we see that the only component of the stress tensor (referred to the convected co-

ordinate system 6; = (x,y, z)) which is altered by changing the position of the axis of torsion
is the component 733,

(6-11)
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FINITE EXTENSION AND TORSION OF CYLINDERS 65

The components ¢'* of surface traction on the end z = /; of the cylinder, referred to the
y-axes, can be found as in § 5. Thus

'=4q, q?=¢,
q"3 = 2y + (Cy+ Cy) [38h—x¢, +yd,+ Bax -+ 3by +3(a®+6%) +b(¢,—y) —a(d, +x)]1}

where ¢! and ¢? are given by (5:17). The components of resultant force on z = [ in the y,, y,
directions are zero as before, while the third component ¥’3 in the y4 direction is

Y's = f g'3dS
Ry

=20 [ (Ci4-Cy) [3h— g, + g, + Bas -+ 3by+§(a*+5°) [ sy

We can write this in the form
Y3 = Y3+ 3y2%(C,+Cy) {2ad,, +2b A, + (a2 +b2) 4}, (6-12)
where Y3 is given by (5-18) and where

A0=ff dxdy, AO,,:” ydxdy, Aoyzﬂ xdvdy.
Ry Ro Ry

The expression (6-12) shows that the total normal force over the end of the cylinder is least
when the axis of torsion coincides with the line of centroids of the cross-section. For, on
differentiating Y3 partially with respect to a and with respect to 4 and then putting the
derivatives equal to zero, we obtain

a=~—z°—y=—xl, b=—%"ﬁ=—@,

0 0

where ¥, ¥, are the co-ordinates of the centroid of the cross-section, showing that Y3 is least
when the axis of torsion passes through the centroid of the cross-section.

Of the moments m'* of the total traction on z = /, about axes parallel to the y,-axes through
the point y; = (0, 0,/,), the moment m’3 is alone unaltered. We have, in fact,

= f f R {929°— (y3—1o) ¢'*}.=1, 48

= QWH o It (Cr+Go) [y{3h—24, -y, + 3ax+3by +§(a+0)}

— (B, +x) +b{y(d,—y) —x(¢,+x)}]} dx dy.
This can be written in the form ( Y (éy) (¢y )1} dxdy

m't = mi202(C, + Cy) {3alpyy+ 36, +-3(a2+87) Aoy — Sy}, (6:13)
where m! and S, are given by (5:20) and where

I, = f f xydxdy, I, — f f Pdxdy.
Ro Ro
In the same way we find that

m'? = m?—2¢*(C, +C,) {8aly, +3b1,,,+3(a®+b2) 4y, —aS,}, (6-14)
where | I, = f f x2dxdy,
Ro
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and m?is given by (5-20). Values a, b may exist which make the moments m'!, m'2 zero, and,
if this is possible, we can then choose the axis of torsion so that the total traction on z = [
is equivalent to a force along the y;-axis and passing through the origin of co-ordinates,
together with a couple whose axis is parallel to the y,-axis. It will also be possible to make the
force along the y;-axis zero by taking a particular value for the constant 4.

7. SOLUTION OF PROBLEM USING COMPLEX VARIABLE

The equations (5+4), (5+10) and (5-12), subject to the boundary conditions (5-14), deter-
mine the functions U, V, y for a given cross-section, which we shall assume is a simply-
connected domain bounded by a single closed curve.* The determination of these functions
is greatly simplified by using the complex variables { = x 1y, { = x—idy instead of the real
variables x, y. :

We shall write D(¢, Q U+iV,  $(xy) = 30 +f(Z)}a (7-1)

where f({) is the classical complex torsion function, and as usual we shall denote the complex
conjugate of a quantity by a bar. The complex torsion function is regular in the cross-
section R, of the cylinder and satisfies the boundary condition

RTQHO+FU Q- =0 o fO-TO =ik (12
on the boundary of the cross-section,

Flx)=G(G0) =0, Gidc+G dt—o, (7:3)

where G is a real function of { and {.
Equation (5-12) is equivalent to

agag 2C 202{2 +f”(€)jw }

and we shall write the solution in the form

2x = C, {{—Cof2lC+f(O) S (O} +2i(Ci +C) {0 —7 (a);
—iCALS (O =L (03— -Q(D), (74)

in order to simplify the boundary conditions. The function €({) is a regular function of {
in the domain R, and is undetermined to the extent of a purely imaginary constant. This
constant does not affect the stresses, however, and therefore represents a rigid body motion.
The first two equations in (5-10) combine to give

4O\ 0 g =~ 2 gh+ GEH GIE LT @+ ~T '@ (O~
| = Q'(0) +2i(C, +2C,) (D),
so that 4(Cy+GC,y) D = 2i(C, +2C,) {A(T) +EQ(0) +a(C) +x(0) +C,2 (D), (7-5)

* We can show that the solution is unique except for a displacement U = ky +a, V = —kx + b which does
not affect the stresses.
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FINITE EXTENSION AND TORSION OF CYLINDERS 67
where o({) and «({) are regular functions of { in the domain R,. The term C,3({), where
14
g0 = [ o)y, (7-6)

has been added to simplify the boundary conditions.
 The incompressibility condition (5-4) gives

D (?ﬁ i
S+at 5 O-TO)

that is, using (7-5), . '
—2i(Cy +2Cy) {10 =D} + Q) + QD) +x'(0) ++'(§) = 2i(C,+C) {L{f(Q) = LF D)}
This equation implies that ‘
K(0) == Q) +2i(C+2C) A +2A(CHC) L O +if (7-7)

where £ is a real constant. The displacements arising from the constant £ do not contribute
to the stresses, however, and may therefore be omitted. Integration of (7-7) gives

&(§) = —O(8) +2i(C, + Cy) {f(0) +2iC,k(L), (7-8)
where ' o) = | Qo) do, k(L) = | o) do. (7-9)

We omit the details of the calculation, but it can be shown that the boundary conditions
(5-14) can be reduced to the condition

QT O+ (C+20) B-FHO+AQ +2(C+20) G =0 (710)

on G({, {) = 0. To obtain this condition, the boundary conditions (7-2) on the torsion function
f(§) and the expressions (7-4), (7-5) for x and D are used. The elastic moduli C), C, may be
removed from the boundary condition (7-10) by writing

Q) = (C1+2C) I'(Q),  w({) = (C1+2C5) ¥(D), (7-11)

and we obtain
T Q+7 O+ B-FTO+TQ+20 =0 (12)

on G(L D) = o. |

With (7-3), the condition (7-12) can be written

L@ +7' (© + 3 dHT Q) +T (@ +2G L = 0
on G(¢,{) = 0, and this is .
WTQ+70+ [ T(0) do+0T = 0
on G(¢,{) = 0. Thus the boundary condition (7-12) is equivalent to the condition

Q) +7Q+[ Ty drteT=0 (1:124)

on G({, C) = 0, where we have absorbed the constant of integration into the integral on the
left-hand side.


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

68 A. E. GREEN AND R. T. SHIELD ON THE

For some cross-sections the function G({, {) may be such that it is possible to determine the
functions I'({), y({) from the boundary conditions (7-12) or (7-12a) by expanding them in a
power series or otherwise, but for other cross-sections a more powerful technique is needed.
We suppose that the domain R, in the {-plane, representing the cross-section of the cylinder,
is mapped conformally on the interior of the unit circle in the ¢-plane by the transformation*®

{=m(s). (7-13)
The boundary C; of the domain R, is mapped on the unit circle |¢| = 1, which we shall
denote by 7, so that we may put

G0 = G,(t,1) = tt—1, (7-14)
. G [ G ¢
and it fOHOWS that ﬁ = m'—(t) N ﬁ = W .

Functions of { which are regular in the domain R; become functions of the variable ¢
regular in the unit circle, and we shall use the notation

H({) = Him(t)} = Hy(?) (7:15)
in the subsequent work, where H({) denotes any function of {.
The boundary condition (7-12), after multiplication by m’(t) m' (1), is

Hm(t) Do(2) +7o(2) + (2) {m(8)}2] —m'(£) t{T(8) + T (t) +-2m(t) m(z)] = 0

on #f = 1. This can be written

m' () To(2) “76(1/t)/t2+§t[m(t) Lo(1/t) +m(1/8) {m(2)}?] = 0 (7-16)
on { = 1, and (7-16) implies that we must also have
vo(t) =m0’ (1/2) Fo(l/t)/t“ra—?; [m(1/2) To(8) +m(8) {m(1/8)}7] = 0 (7-17)

on 1 = 1, since (7-17) is the complex conjugate of (7-16).

We can now reduce the determination of the functions I'y(£), y,(¢) to the solving of a certain
integral equation by a method used by Muschelisvili (1932, 1933) to solve elastic problems
in two dimensions.

Certain conditions must be satisfied in order that the operations which are used shall be
valid, and we shall suppose, without further repetition, that the various functions which are
involved satisfy sufficient conditions for our purpose. For example, we shall use Cauchy’s
integral formula

g L COZ"_‘%@:a(o),
which is valid if { = ¢ is an interior point of the region R, whenever «({) is continuous in the
closed region R, bounded by a contour C; and regular at every interior point of R,. We shall
also use Harnack’s theorem which states thatiff, (0), /5(0), $,(0), ¢,(¢) are four real continuous
functions of the argument ¢ (deﬁned on the unit circle y), and if

ji ?fzc___%nj‘gbl Z¢2d§

27n y$—0

for all values of ¢ interior to 7, then
$:(0)=/1(0),  $:,(0)=/2(0).

* The complex variable ¢ is not to be confused with the time ¢.
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FINITE EXTENSION AND TORSION OF CYLINDERS 69

If we multiply (7-16) and (7-17) by dt/2mi(¢t—0), where ¢ lies inside the unit circle, and
integrate around the unit circle y, we obtain

(0) Tofo)+ 55z | m@) (1) +mmL)} 2y = 0 (7-18)
24(0) = =g | T +m( (U} 2 (7:19)

where we have used Cauchy’s theorem, the rule of integration by parts and the results

) T gy = s HOADTo(18) s = 0.

By Harnack’s theorem, under suitable conditions, (7-18) and (7-19) are completely equi-
valent to (7-16) and (7-17).

The integral equations (7-18) and (7-20) can also be obtained from the alternative form
of the boundary condition (7-12a4).

Integration of (7-19) with respect to ¢ gives

7(0) = =55 | AU +m (10} % (7:20)

apart from a non-essential constant of integration. Thus y,(¢) is known when I'y(¢) has been
determined from equation (7-18). The function «({), or «,(f), is also known when I'y(¢) is
known, for we have, from (7-8),

Ko(£) = —Oy(2) +2i(Cy + Cy) m(?) fo(8) +2iCoko(0), (7-21)
where Oy (t) = (C,+2Cy) ftPO(o) m' (o) do, ko) =fff0(or) hz'(a) do. (7-22)

The components # of the stress tensor, referred to the y;-axes, can be obtained from
(5:16) when the pressure function y and the complex displacement D have been found from
(7-4) and (7-5), but it is more convenient to note that, after simplification, the following
combinations of the components ¢ are given by

P — 12242112 = 29 2LQY (0) + ' (O) — C, (2 +-2i(C, +Cy) LF (D)}

_ oye| ™) Go(t) _ ’ m(t)
= 2| iy Qo) 58 = Crtml) +-20(C 4 G s T t>]
122 = 22— Q(0) — Q) +2C, LT+i(Cy+Cy) [2{ A1) —F O+ (O =L (O}

- 2¢2{ — Q(t) — () +2C, m(8) 7(1) -+4(C, +C,)

<[2th) T+ s 0~ B )

t‘“rit”“ 2(C1+Cy) (¥ +1°2) {7 (D) +1C}
2(Ci+Gy) (P +19%2) {fs () [’ (2) +im (1)},
t33—¢2{6(0 +Cy) h—Q(0) —Q(0) +(C,—2Cy) {T+2i(C, +Cy) {£(8) —F(0)}
+(2G+G) (O F (D) —jCz{Cf( ) =L (OB
= P°[6(C1+Cp) h—0(2) —02(2) 4 (C, —2Cy) m(2) (1)
+2i(Cy+Gy) {fo(8) —fo@)}+ (2C1 +Cy) S5 (2) Jo (1) fm’ (2) 70 (2)
—iCofm(2) fo () fm’ (8) —m(2) Jo (2) [m’ (D)}].

We number these expressions (7:23).
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We now obtain two results which will be of use in the following work. By applying
Stokes’s theorem in the complex form

2i RD%—’—gdxdy - [ #eoa, (7-24)

and by using the condition (7-2) on the function f({), it can be shown that

[[ a7 @+igasty =3[ aFQ-AQ+icGa=0,  (129)

where «({) is a regular function of { in the domain R,,. In particular, we can show from (7-25)

that ffRol{gf/(C) TP ()} drdy = _fo (O F(Q dxdy. (7-26)

This result is the complex equivalent of (5'19).
Using the expression (7-4) for y and the result (7-26), the expression (5-18) for the resultant
normal force Y2 over the end z = [, of the cylinder can be written

Y3 — y2{6h(C, + Cy) g+ (C,—2C,) I}
+¢2J [—Q(8) —Q(8) +2i(C,+C) {1Q) —A (L)} + (2C, +3C,) f'(0) J'(D)] dxdy,  (7-27)
where 4, = f f dxdy, I,— f f (2 +?) dxdy. (7-28)

The surface integral in (7:27) can be transformed into a line integral by applying Stokes’s
theorem (7-24), and we obtain

= Y64 (C,+Cy) 4+ (C,—2Cy) I}
gV (700 ~8(0) +2i(Cy+C) 10 KO} (20 +3C) S (O TO1L (7:29)
— Y2{6h(C,+Cy) Ay+ (C,—2C,y) I}

—5 W’L [—77(2) Qo(t) — Oy(2) +2i(Cy + Cy) {(2) fo(t) — Ko (2)}
+ (26, +3Gy) S5 (8) Jo(@) m' (8)] m'(2) dt. (7-30)

The moments m!, m? given by (5-20) may be calculated when the value of y is known, but
it is perhaps simpler to note that

m—im? = Giyh(Cy 1-Cy) [ Taway-ip2 [ Q-0 -0

+(Cy—2Cy) {T—C, f1(8) F/() —i(Cy+2C,) {Lf(§) =L (D)}
+i(Cy+Cy) B0 —2f (O — (Ci+Cy) f(0) S1) }dxdy. (7-31)

To obtain this expression, the results (7-25), (7-26) and the expression (7-4) for ¥ have been
used. We could also express m! —im? in terms of a line integral taken around the boundary
C, of R, or.around the unit circle y in the ¢-plane.

In the next two sections we apply our general theory to cylinders with special cross-
sections.
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8. THE CARDIOID

We consider the torsion of a beam the cross-section of which is the cardioid
r = 2c(1+cost),

where re? = x+-iy and ¢ is a constant. The axis of torsion is taken to pass through the cusp
of the cardioid, but the results of § 6 may be used to consider the torsion of the cylinder about
a different axis.

A suitable mapping function is

= m(t) %C(t—1)2,

(81)
and we have Jo(t) = ic?(83—4t+12). (8-2)
Substituting (8-1) in the integral equation (7-18) we obtain
B L el T e D de |
2(0—1) Ty(0) +2m.fy(t DT+ O (8:3)
If we assume that L) = §: a,t",
n=0
where the g, are real constants, and use the result
1 m _ [me™ 1 (m>0), )
Qn“ify (t—a)?dt_{o (m<0), | (8-4)

we find that

1 = —1)*
2—7TZ.L(t~1)2{I‘0(1/t) +¢? (¢ 2 ) }(tita)Z = 2ay(0—1)+a,+c*40%— 1802+ 300 — 20}.

Equation (8-3) can now be rearranged to give

Ty(0) = —ay— +c2{ 2

—8—{—70—202}.
oc—1

a4,
2(c—1)

Putting ¢ = 0 in this equation, before and after differentiation with respect to ¢, gives two
equations which enable us to determine 4, and «;, and we have finally

Ty(0) = 02{~~1§1-+7o—202 ~0—_3_—1} (8:5)
It is now a simple matter to calculate y,(¢) from (7-20) and it is found that
Yo(0) = (0% —50), (8-6)

apart from a non-essential constant.
The complex displacement function D(¢, ) is found, by substitution in (7-5) from (7-21),
(8:5) and (8+6), to be given by
__1)\2
4(C,+Cy) D = 3(C, +2C,) {%—_% (B—143)+ 14— 112 | 6t3—t4——52+22}

+3Cy{ —21og (I—1) -+ 67— 72— 81+ 102 — 1843144},

Vour. 244. A. 10
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Substitution in (7-23) shows that the components #* of the stress tensor are given by

11__ 22 9;12 22(01“*"02)[(’5—
$H— 224 2t ~2¢c{2(2_1) .

(_

i§2(2+22-22)—|—2Z—5:|—Cl(t—1)4

_%2_(45_23_)[( 1)2 (7 0t 3 )2)+2t-a]},

22 = 2¢2c2{201(t— 1)? (2—1)2+CZ[11 —T(t+7) +2(2+8) +%+?—37]

+(C,+Cy) [—5+4 L) — 22—+ —+Z—:3~1 }

1B 412 = 20c(C, +Cy) (¥ +19%2) {(t— )2— (1— 2)},

(2—1)
£ — 6J2h(C,+C )+¢262{(C +Cy) [2 »(f—g%w_f%ﬂz—mz(zq)z
k|G - (—§§}f§_3(¢~1)2(z—1)2

+%+il+ 15—10(¢+1) +3(t2+7f2)]}.

In the classical solution of the torsion problem for a cardioid the stresses become infinite
at the cusp. In the present solution which contains second-order terms the stresses are still
infinite at the cusp, but the solution has the further drawback that the displacements there
are also infinite, except when the elastic constant C, is zero. The stress system can, however,
be maintained by a finite system of resultant forces and couples. The difficulty could be
avoided by considering a slightly different transformation

{= 6‘(t—1—€)2,

where ¢ >0, which gives a curve approximately like a cardioid if ¢ is small. The displacements
and stresses are then finite everywhere and the resultant forces, obtained for the cardioid,
may be considered as an approximation to the forces for this modified cross-section, when
¢ is very small.

The resultant normal force over the end z = /; of the cylinder is found from (7-30), and
evaluating the line integral by the theorem of residues we obtain

Y3 = 22364 (C, + C,) +¢c%(37C, +20C,)}.
For this cross-section we have, using the notation of § 6,
Ay, =0, A, =10mc3, A, = 6mc?,
so that if we had taken the axis of torsion to be the line ¥ = —a, y = —b, equation (6-12)
shows that we would have then had
Y3 = ¢2mc¥{36h(Cy+ Cy) +¢2(37C, +20C,) } + 3y 2mc?(C| + Cy) {20ac + 6(a®+5%)}.  (8:7)

In particular, when the axis of torsion passes through the centroid (x,y) = (¢, 0) of the
cardioid, equation (8:7) gives

Y = y2mc2{36h(C, + C,) —c*(13C, +300,) ).
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9. BoOTH’S LEMNISCATE AND EPITROCHOID

Two further cross-sections will be considered here, but we shall obtain only the function
Iy(#) in each case, since the complex displacement function and the stresses can then be
obtained by straightforward calculations.

We consider first a cylinder which has a Booth’s lemniscate for its cross-section, twisted
about the line of centroids of the cross-sections. The mapping function

m(f) = Z’fﬁﬂ (a>1, 5>0), (91)

maps the unit circle in the ¢-plane into a Booth’s lemniscate (or the inverse of an ellipse with
respect to its centre) in the {-plane, and the torsion function is

ib2(a2— )

fo(t) = 2(44_1) (az—l—t2) :

(9-2)

The integral

o fm(z)r l/t)( 02 217sz (1/6) 2+t:)dgt—~0)2’

which occurs in the integral equation (7-18), is such that the integrand is of the order of
| ¢|~3 for large values of ¢ and it follows that the integral is equal to minus the sum of the
residues of the integrand outside y. Since I';(1/¢) is regular outside the unit circle, and since

by symmetry we must have I'y(¢) = I'j(—¢), we find that the integral has the value
a2
bFO(z/a) G 2_,_ )

Evaluating the other integral which occurs in equation (7-18) in a similar manner we obtain

(0% —3a202+ 34802 —a?®)

Ly(0) +Tg(tfa) = b? (@*—1)2%(a*—o% (93)
If we put ¢ = i/a in this equation we have, apart from a purely imaginary constant,
L b2(1 +4a*+a?)
#hlle) =~ (@ )

and therefore, from (9-3),

T,(0) — — 0?(1+4a*+-a®) +bzaz(l +a%0?) {4+ 3a5 —0%(3 +-a*)}
0 2(a*—1)%(a*41) (a*—1)2(a*+1) (a*— o) '
The displacements and stresses can now be determined as in the previous section.
Finally, we consider the torsion of a cylinder about the line of centroids of the cross-
sections which are bounded by an epitrochoid, or a regular curvilinear polygon, so that the
beam is a grooved or fluted column. The transformation

C=m(t) = ct(L+pr)  (0<p(n+1)<1), (95)

(9-4)

where ¢ and 7 are real and positive, maps the unit circle | ¢|<1 upon the space inside a
regular curvilinear polygon of n ‘sides’. The complex torsion function is in this case

Jo(@) = i?{F(1 +p%) + 7} (9-6)

10-2
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Considerations of symmetry show that I')(¢) must be a function of ¢, and we therefore
assume that

Ly(t) = % a,t" (a,real),
r=0

in order to evaluate the integral in equation (7-18). Employing the result (8-4) in (7-18)

and dividing by m’(s) we obtain

_ e tpay 2 (1+22) Fop(nt 1) [ay+ P2+ Fotpe(nt 1)} g
(T an-+1) o} '

If we put ¢ = 0 in this equation and if we differentiate the equation with respect to ¢” and

then put ¢ = 0, we obtain two equations which serve to determine the constants a, and a,.
Substituting their values in equation (9-7) we get

Ty(7) =

Lo(0) = —c*{1 =2m —p* (n+1) +p(n+1) 0"[3—2(n+1) 2 — (n+1) 4]
+2%(2n+1) o [1—p2(n+1)]}/2[1+p(n+1) "] [1—p(n+1)].  (9-8)

The working has now been carried to a stage where further results can be obtained by
straightforward calculations.

TORSION SUPERPOSED UPON FINITE EXTENSION: SECOND-ORDER EFFECTS

10. STATEMENT OF THE PROBLEM AND GENERAL SOLUTION

We now consider the more general problem of determining the second-order effects
accompanying the torsion of an incompressible cylinder which has previously been subjected
to a finite extension A along its length. As before the material of the cylinder is assumed to
be isotropic in the unstrained state and to have the Mooney form (2-17) for the strain-energy
function W’'. Owing to the finite extension, however, this form for W’ will not give all the
possible second-order terms in torsion. :

We suppose that the unstrained cylinder is of constant cross-section R, the generators
being parallel to the x;-axis and the ends of the cylinder being x; = 0 and x; = /;,. The
cylinder is first given a uniform simple extension A along its length so that it becomes a cylinder
of constant cross-section R and length /. Since the material of which the cylinder is composed
is incompressible, the point (xy, x,, x5) will move to the point (x;/,/A, #,/,/A, Ax;) during this
deformation and we shall write

x=x/JA, y=2xfJA, z=2Ax5, [=A,. (10-1)
We take the convected co-ordinates 6, of a point in the elastic body to be defined by
Oy =x+iy = (5, +x) [JA, Oy =x—1y = (x—1x,)[JA, 0O5=2, (10-2)

and we shall write ({, {, z) for (6,,0,,0,). Equations will be obtained directly in terms of
complex variables ¢, {. It follows from (10-2) that
0, 2/4, 0 _
gr=|2, o, o), Joe= é (10-3)
0, 0, A2
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FINITE EXTENSION AND TORSION OF CYLINDERS 75

We wish to choose the final co-ordinates y; of a point in the elastic body to be such that the
cylinder is in a state of torsion about the z-axis (or x5-axis), and such that the equilibrium of
the cylinder is maintained by tractions applied to the ends of the cylinder only. For similar
reasons to those given in § 5, we suppose that

Y = x—Yyz— Y22 — §Pha+ U,
Yo =Y+ xz—3Y?%y22 —3Y%hy +Y*V, (10-4)
Ys = z+99(% y) +¥°hz,

where the y;-axes are coincident with the x,-axes, and where we neglect all quantities which
contain the third and higher powers of ¢, ¢ being the angle of twist per unit length of the
extended cylinder. The functions U, V are real single-valued functions of x and y only,
¢ is the classical torsion function for the cross-section R, and the terms containing the constant
hrepresent a further extension ¢?A% of the cylinder. Since the term in 2W in (5-2) was found
to be zero it is not included in (10-4). We shall see later that, when A1=1, the assumptions
(10-4) restrict the axis of torsion to be the line of centroids of the cross-sections of the cylinder.
In terms of {, {, the final co-ordinates (10-4) are

9 =3(¢+0) +z§¢Z(C—Z) —1°2({+ 0 -+ + 1D+ D),

Jo=— SO (O + LD D - oDy, (109
ys = 2+ WSO +AQ}+ ¥k,
where we have put D((, Q) = U+iV, ¢(xy) = HAO+FD}
We obtain, from (10-5),
= b+ L= - W DDy, |
= d Sz e 1D DY,
= =D~ +D),
= WL - LD D)), | (10-6)

Wy 0y ay Lo Lus Looin 5
90, =g teVz— Y= Yh— 5y (Dy—Dy),

= WO, S0, =1,

and ve =i DD Lo -ty
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where suffixes {, { denote differentiation with respect to these suffixes. The incompressibility
condition G = g is therefore

~ Lo S
DA D= L (O -T' O} (107)
The covariant components G, of the metric tensor are found from (10+6) to be given by

Gy =¥ D+ H S (01,
Gy = Y[ D+ (D},
Gy3 = 14+92(2h+0),

G = 4+ 11 OT @+ 5 O -LF©)1],

Gy = 39{f () —zg"},
Gos = 3PS (§) +iC}-

We see that the components G,,, Gy, are the complex conjugates of the components G, G5
respectively. The contravariant components G of the metric tensor are found to be

GY = G2 = —y[4D;— 2" ({) + {2,

G = 1442 f'(O) ' () +ilf () —CF (D)} —2A], (10-9)
G2 = 24+y2(2h+0),

GB =GB =—y{f" () +il},

while the first-strain invariant /7 is given by

(10-8)

v

I, = G,y = {0y [ QT Q+ilef (O =T (O} —2 + 22+ D)

We can now readily show that the tensor components B# defined in § 2 are given by

N

B 322——~¢2[4D§+{f (9} 311

B3 = 20+y2Af(§) f' (O +i{Lf () = LF (D)} —24l, > (10-10)
B2 — /124—2/1—%-3#2{/12 [f(8) F' O+ (§) —LF (D} —2k] +24(2R Fm}

B = B — —y{f"({) +i{}. :

We have to choose now a suitable form for the pressure function p which occurs in the
stress-strain relation (2-18). It was found in § 3 that when quantities containing powers of
¥ above the first are neglected, the pressure function p is independent of ¢, and we expect
the stresses 711, 722, 712 to be of the order ¥? at least. Remembering the stress-strain relation
(2-18), we assume therefore that the pressure function p has the form

T I B

where y is a real function of { and { only. The terms containing the constant # have been
added so that the function y isindependent of 2. With this value of p, the substitution of (10-3),
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FINITE EXTENSION AND TORSION OF CYLINDERS 77

(10-9) and (10-10) into the stress-strain relation (2-18) leads to the following values of the
stress components, correct to the order y2:

rit = 72 — apef (G 4-C,A) (aDg— 2/ (0) + B U@+t ],

= iy W3 -G )= (F+ ) U O T @+t 0 -2 @),
= oy ot B0 O T @+t O~ @[S -G . et

s =7 = 2L+ 2 D) +iD),
where H is the normal surface traction on the ends of the cylinder when the torsion ¢ is zero
and is given by

H— 2{01(/12—/%)4-02(/1—%)}. (10-12)

The equations of equilibrium with no body forces, obtained from (2-8), are

) k.
ik ir
T ’i+{i r}T =0
in this case, since we have

i\ 1046 B
{l. k}_ﬁ?ﬁ_o (k=1,2,3).

Also the Christoffel symbols {j ! k} of the second kind for the strained body are of the order

of ¢, and remembering (10-11), we see that it is only necessary to calculate the symbols

{ k }, { 2k 3} to the first order in ¥ and the symbols { k to the second order in ¥ to obtain the

13 33}
equations of equilibrium. The first equation of equilibrium is

2t +4( 4+ Cd) D=+ O (S (O T QL] @) —i (D} +24L—iF (@) = o,
(10-13)

while the second is the complex conjugate of this equation. The third equation of equili-
brium is automatically satisfied. Using the incompressibility condition (10-7), it follows from
(10-13) that

]' " TN e
2 —Cilt+ G20+ 35 (0 ' (@) =0,
and we write the solution in the form

20 = T~ 2T+ 3, /(0 T O +2i( 4+ ) L1 - F D)

~iSE OO -0 -0@), (1014)

in order to simplify the boundary conditions. The function Q({) is a regular function of {
in the domain R, and, although it is undetermined to the extent of a purely imaginary
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constant, this constant does not affect the values of the stress components. The substitution
of (10-14) into (10-13) gives
C S .(C 1\) —,,»
4§ +C) Dg =@ +ail 1+ C1) | 7,

o that  4(4G,1) D=2l 161+ 35) | O +OQ) +0 4O+ Z2®,  (1015)

where w({) and «({) are regular functions of { in the domain R. As before, the function g({)
is given by (7-6), and the term containing this function has been added to simplify the

boundary conditions.
The function «({) can be expressed in terms of the functions Q({), »({) by means of the
incompressibility condition (10-7). For, on substituting (10-15) into this condition, we obtain

2i{%+ Cof -+ 33) | FO ~ OO+ +¢ () +F D) = 2i(%+czA) LrO-4ron

and this implies that

(€)=~ 00 +2i( -+ C,A) L1Q) +2i 1) +i8 (10-16)

where O({) and £({) are given by (7-9). The term i, where f is a real constant, may be
omitted from the expression for «({) as the displacements arising from this term do not

contribute to the stresses.
The expressions (10-14) and (10-15) for y and D enable us to write the stress components

(10-11) in the form

it = 72— oy Q) +0 (O +{ S+ G+ ) ],

o — H-I—W[Qh{a_l——cz(A—%)}—Q(o —QO+(@r—20,0
(G D) ooy ER SR U0 Qg o - @], | oo

712 = 2g] —0(0) =0 +2i( 3+ 7) O 7O+ {6 (—3) ~Gfa+ ) 2],

713 _ 7% =2¢(T‘+1§) (') +il). J

The boundary conditions on the cylindrical surface will be considered next. We suppose
that the curved surface of the cylinder in the strained state is the surface

G0 =0, (10-18)
where By, 2l JA) = G+ i) [, (s i) [/} = 0 (1019)
is the curved surface of the cylinder in the unstrained state, and G is a real function of { and {.
The equation (10-18) is to be interpreted as the parametric equation of the surface, and
the co-ordinates y; of a point on the strained surface are given in terms of the parameters {, {

by means of the equations (10-5). Asin§3,itcan be shown that the covariant components 7,
referred to the base vectors E/, of the unit normal n to the surface (10-18) are such that

nyinging = Gg:Gg: 0.
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FINITE EXTENSION AND TORSION OF CYLINDERS 79

The torsion function f({) satisfies the boundary condition

| GAS (O +iG+GLf () =it =0 or fIO-F(O) =KL (10-20)
on the surface (10-18), and, using (10-20), the boundary conditions (2-11) on the curved
surface, which we suppose to be free from traction, reduce to the condition '

G +J@){ LGy )] |
+6 — -0 +{a (1) ~G+p)|c] =0 o2

on G({, ) = 0. The second boundary condition is the complex conjugate of this one, and the
third condition is automatically satisfied. To remove the elastic constants C}, C, and the
extension ratio A from the boundary condition (10-21) we write

Q) = { +c(m+pnrquc(p—j)+c(a ;ﬂA@)
o= [feafeprodefe et |
and then the four canonical functions I'({), y({), A({), 0({) are such that
GLT (D) +7' (0 + ] = Gel T(Q) + T'(©) +2LL] = o,
N0 + 1O + 50 01— N o)

on G((,{) =

The first condltlon of ( 10- 23) is the same as the condition (7- 12) imposed upon the func-
tions I'({), y({) of § 7, and the method of solution used in § 7 is applicable here to determine
the functions I'({), y({). Thus, if we suppose that the transform { = m(¢) maps the domain R
upon the interior of the unit circle y in the #plane then, under suitable conditions, I'({)
and y({) are given by (7-18) and (7-20), where we again use the notation (7-15).

With (7-3), the second boundary condition of (10-23) can be written

(@) +50) + [ A owd &g = 0
on G(¢, ) = 0. Integrating this condition we obtain
A+ + [ Aoy dr = [ et (1023a)

on G(¢, {) = 0, where the path of integration of the line integral on the right-hand side lies
on the boundary C of R. The functions A({), §({) are regular in R, and (10-23a) shows that
we must have : S

| @a—o
if A(), 8(¢) exist. Applying Stokes’s theorem (7-24), this condition is equivalent to
[[ caray =,
R
and we see that the z-axis must pass through the centroid of the cross-section R of the cylinder.

VoL. 244. A. : ' 11
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When this condition is satisfied, i.e. when the axis of torsion is the line of centroids of the
cross-sections, it can be shown that, under suitable conditions, the functions A({), §({) are

given by .
’ (10-24)
o ):‘ﬂ (/o) (1/;);)# 2_;“:' DA e

When the functions I'(), 7(¢), A({), 8({) have been determined from the boundary con-
ditions (10-23), or alternatively from the integral equations (7-18), (7-20) and (10-24), the
function «({) can be found by substitution in (10-16) and the displacement function D({, {)
can then be obtained by substitution in (10-15).

The stress components 7 referred to the convected co-ordinates §; are given by (10-17),
but it is perhaps more convenient to know the stress components referred to co-ordinate
systems in the strained body. To find these, we write

Zy =y, +iy, =2, Zz=y1—iyz,=z Zy = ys, (10-25)
and we let 77 and #* be the components of the stress tensor referred to the Z-axes and the
y-axes respectively. It can easily be shown that '

TN = T2 — gl g2 9j12  Ti2 — t11+222,
T8 — T2 — 13 238, 7733 — 433
From (10-5) and (10-25) we have

" Z= L AP A 1026
_ Zy = z-+-3{(0) +AQD} + 2,
and it follows that
N s AR y2D;, i~y
= VD, L—ipz— 2=+ Dy —ifl— P .
/70, (D), B
(10-27)
Because of the tensor character of the stress components 775, 775, we have
Trs — Tik aZ? aZS
' 06, 00,°
and (10-17), (10-27) give
Th = TR — 2[00 (0) + (0) - O 2i( ) D), ‘
712 — g Q) ~O0) + 20,0 +( G+ ) 2110 ~F O+ O~ Q) .
7= 78 = (p+ig) [2(G+ 2 P g v, . (oo
79 — H | 2;/%{0 (m‘uq) +CZ(A+P)}+¢2[ Q) — QD) + (€, 12—2C,1) &
+oi(§+ ) 0 -For+ 4+ o 70— Sero -]
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FINITE EXTENSION AND TORSION OF CYLINDERS 81

We notice that the first two terms in the expression for 73 can be written, to our order of
approximation,

201{,12(1 )L ;+ 202{/1(1 ) — —~—1-—~} :

A(1-+y%h) B(1+y%h)?
We consider now the surface tractions on the end z = [ = A/, of the cylinder. The unit
normal vector to the surface z = [ is the vector n = n3E3, where

1
"The components of surface traction (2-11), referred to the 0-axes, are therefore
Pt = (713: 723) 7'33/«/033)2#3

to our order of approximation, and if we write Q* for the components of surface traction
referred to the Z-axes, then

(007,
Q= (P 70, )
= (713 i) (1 i) (2 i) (i) By () + W () +7’Z;33§ (1))

The element of area dS on the surface z = [ in the strained state is given by

s = J(GG®) dﬁldﬁzz—JG33d§d§ JG dxdy.

z=l

Hence, to our order of approx1mat10n, we have

Q*dS — dxdy{ T, T2 H z;m[c (/12 + ,1) 138

/12
+ — 00— 0@ + (€12 —20,) &+ 2i( P+ 52) (O T}

G, C

—RLOT Q=GR -]

The components of the resultant force N over the end of the cylinder may be referred to
the Z-axes or to the y;-axes, and we write

N=NI =71,

where I, are covarlant base vectors for the Z; co-ordinate system and i, are unit vectors along
the y,-axes. Then we have .
, N1=Y1+ZY2=ff Q1dS
R

— (1) H f fR Cdrdy = 0. | C (1029)

We see that there will be no resultant transverse force since the axis of torsion passes through
the centroid of the cross-section. The third component of resultant force is given by

N? = Y3=f Qs
_ [H+ 2¢2ﬁ{cl(az+§) 3%}]A+¢2(0 2—2C,0) I

[ [ +2(i‘+,12){f() FO3+(2 ‘»+3A2)f(§)f(€)]dxdy,
(10-30)

I1-2
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where we have used the result (7-26) and where

4 :HRdxdy, l:”R (42 y2) dxdy.

The surface integral in the expression (10-30) can be transformed into a line integral around
the boundary C of the domain R by using Stokes’s theorem (7-24), and we obtain

[ zm{c}(m%) +ag2l|a+ymcae—2en 1

4o 050 Gt -0 el
1031)

It is also possible to express Y3 in terms of a line integral around the unit circle in the ¢-plane
by using the transformation { = m(¢).
The moment per unit area of the traction on z = [ about the point y; = (0,0,7) is R x P,
‘where R is the vector from the point y; = (0,0,[) to a current point on z =/ and P is the
surface force at that point. We have

R = {Zl Il +Zzlz+ (Zs_l> I3}z=l> P = Qkaa
and therefore

RXP-——[{Z Q= (2= 1) Q3T +H{(Z —Z, QP H{Z,Q*=Z,Q}I*].,, (10-32)
since ' LxI, = 2 mI

where ¢,,, = -1 according as 7, 5, ¢ is an even or odd permutation of the numbers 1, 2, 3, and
is 0 otherwise. The resultant moment M of the surface tractions on the end z = [/ is obtained
by integrating (10-32) over the end of the cylinder, and, if we write

M=MI =m,i,
we have, using the results (7-25), (7-26) and (10-29),

M, = Y —imy) = & [[ (2,00 (Z,-1) @08
= S Hy? f Ddxdy |
viv[[ ([ -ew-80+Cr—2en @-2r 070
——i(%wp"‘){§f’(§>—Zf’(Z)}Jri{Cl(Au;)+CZ(A+%)}J‘(§)
vile(e=3) v (i- 2o |- (P R0 ©) e, o
M, = my = QJ{ZQ?« Z,Q"),_,dS
~o(§+ 33 [[ [ o-u }+¢]dxdy+¢ﬂf | casdy

_ ¢(il+%) Sy HI, (10-34)
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FINITE EXTENSION AND TORSION OF CYLINDERS 83

where § is given by (3-24). Formula (10-34) for m; can also be deduced, as a special case,
from (3-23). ,

The theory developed in this section can be modified to include cross-sections which are
not simply connected. For multiply-connected regions, the boundary condition on the
functions Q({), w({) will differ from the condition (10-21), since, in general, the complex
torsion function f({) will satisty the condition

(O)—=f(Q) =L
on only one of the closed curves boundlng the cross-section. Also the solution by conformal
transformation on to the unit circle will not apply ih this case.

11. ELLIPTICAL CYLINDER

The theory of the preceding section will be applied here to consider the torsion of an
elliptical cylinder about its axis, but the solution is obtained without using the integral
equations. The unstrained cross-section is the ellipse

2+b2 ’

with semi-axes a, and b,, and after the finite extension A along the length of the cylinder has
been imposed, the cross-section becomes the ellipse

L=, (11°1)

where a = aylJA, b= byl

Equation (11-1) is the parametric equation of the curved surface of the cylinder in the
strained state and the equation can be written

L0 = Triae+ )~ @) =0, (112)

—02 @3B}
TR by

where @=—
The complex torsion function f({) is given by

S0 =——§—iocC2+iQ24—_}~)(a2—b2). (11-3)

o

From considerations of symmetry, the functions I'({), y'({) defined by (10-22) must be
even functions of {, and we assume therefore that

L) = AZ+B, y'({) = L+ M, (11-4)

where 4, B, L, M are real constants. Substituting (11-2) and (11-4) in the first of the boundary
conditions (10-23), we obtain

(C+al) [24L0+ L+ M+ 2] — ({+al) [AP+ AP +2B+2((] = 0 (11-5)
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on the surface (11-2). The condition ( 11'5) contains terms in {, {, {{?, {%¢, {* and {3, but the
terms involving {® and {3 can be removed by using the equation of the boundary, G({, {) =
Equating the coeflicients of the terms {, {, {{? (*C in the resulting equation to zero, we get

2
M—2aB+ (L—ad) @7}2 (a*—5?) = 0,

2__
«M—2B+ (a—A) > Y (22— — o,
: (11-6)
2A(oc+&)—L——3‘= 0,
2
4A+L( 7)~3a — o0,
and therefore
% (@) (@-1)]
a2’ - 2u(a?+2)
I 32 M___(a2~b2) (a2—1) (11-7)
242’ N (2+2) °

Substituting these values in equations (11-4) we find that
3a (@ —b?) (> —1) a? (a®—0?) (*—1) ¢

') =

a2+2€2_ 2u(a?+2) ° 7(6) = (a?+2) = (a®+2)
In the same way we obtain
% (@07 (a®—b?)
A(C) ""“0‘2_]_2{: “20‘(“2_|_2) 3(0 0‘2+2) é’S (062+2) g

The functions Q({), w({) can now be found by substituting in (10-22).
The complex displacement function is found from (10-15), (10-16) and (11-3) to be
given by

1(a+2) (4+C) DG D) = hatole 3 P+ Cofsat) [ +Cu1245) 22— )
_%*062Z3{062/§;2+C(/12 /1) QCZ(M—P)}

— {2+ (22— 1) Z}{a2 %+02(A+ %)]*CI(AL%)_Q%} ’

while the stress components 77 are given by

- st o) o e

—azzz{c, (Az—i) —202(/1+;1—2)}- (a>—b?) {a2[%+02(i+%§)]+01 (/12—2) —2%}],

~ s [2<“2+2> CT+a+ D) {2a2(§1+§;

_p2 '
KO ofGocaicr]

)+0112 202/1} '
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TU — T% — 2i(1+iy2) {az( . /12) FUC G, A)}

T33—H—|—2¢2/z{01(2/12+ A)+C(/1+ ,12)}+¢2[Cf{ ( Cl+f2)+c r—2C /1}

ey (3 rale-3) a3

(a%—b?) { (Cl C) ) )
F ot E, 2+ 22) +a2Cod 4Gy }]

The resultant normal force Y3 over the end z = /, of the cylinder can be found from (10-30),
and, omitting the details of the calculation, we have

V3 — ﬂdb[H -+ 2¢2ﬁ{01 (’12 + %) +3 % }]

o, mab (a*+b?) L =0 2 8 0
T e (ML%) {01(,1 A)+202(A p)} 20,2—4C, | (11:9)
The twisting couple Mj is found from (10-34) to be
b
o, — g 757 (@02) (4 73) (0 =)

= "0 1) (G14+52) 5 —a2).

When the elastic constant C, is zero, that is, when the material of which the cylinder is
composed is the neo-Hookean incompressible material defined by Rivlin (19484), and when
there is no finite extension of the cylinder, the expression (11-8) becomes in this case

ag—10a% b3+ 353}
24 (a3 +b3)
We see that if there is to be zero total force over the ends of the cylinder we require
o (363—13) (338}
24 (ad+03) ’
and it is interesting to note that £ will be positive or negative according as ay/b, is less than or
greater than /3.

V3= 6¢27m0b001{iz + 3

One of the writers (R.T.S.) wishes to thank the Department of Scientific and Industrial
Research for financial assistance.
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